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This note investigates the flow of a viscous electrically conducting fluid 

in a plane duct in the presence of a magnetic field and heat transfer. The 

generation of heat from internal friction, Joule heat, and the dependence 

of viscosity on temperature are taken into account. An analogous problem 

in isothermal flow was solved by Hartman 11 1; for non-conducting fluids, 

it was previously considered also in references [Z-4 1. 

1. We shall consider steady flow of a non-viscous fluid in the x- 

direction between infinite parallel walls z = + O, when a uniform magnetic 

field Ho is imposed in a direction normal to it. Just as in the isothermal 

case the general equations of magnetohydrodynamics permit [l 1 a solution 

of the form: 

H, = H, (2)) H/l, H, = N, = const (for the magnetic field) 

Vx -1 v(z), vy = vz = 0 (for the velocities) 

T = T (z), p = p (2, 2) (for temperature and 
pressure) 

The functions sought for satisfy the system 

0 

(1.3) 

(1.4) 

Here c is the velocity of light, ‘7 = q(T). k = cOnSt. ff = conSt, p = 

const correspond to the viscosity, the thermal conductivity. the electrical 

conductivity and the magnetic permeability of the fluid respectively. 
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We limit ourselves to the consideration of problems with the simplest 
boundary conditions of the form 

From equation (1.4) it follows that p + pH’/Srr = f(r). and from (Ll), 
since the left side of the equation depends only on Z, that 

We introduce the dimensionless variables 

c’$, 90 Hz 
U=*2V, 

Pa 
kg-, 

0 
e=-$$r, q+ 

where v. = vT= oe and the parameters 

A = pHoa / 4xap*, B = c2qo / 4m+a3p* 

In the new system of variables, (l.l)-(1.3) can be written in the form 

u’ + Bh” = 0, 8” + $ u’s + ABh’* = 0 (W 

in which u(*i)=~{*~)=6{~i}=O, 9(f1) =I* 

The first two equations of the system are integrated directly: 

$+Ah++Cr, u + Bh’ = C$ (1.7) 

From the condition of symmetry, Cl = 0: multiplying the first of the 
equations (1.7) by u’ and the second by Ah’, we obtain 

z;= &‘-A&‘; ‘@h’s = {C, - u) Ah 

Introducing the quantity r = 4 - Ah, with the aid of the second equa- 
tion (1.6) we transform these equations to the form 

u’= B 
-= 
9 -2 =“* ABh’” = ; (1 _ +)a (1.8) 

Consequently, in plase of the third of equations (1.6) we have 

@“+$T”+i-zr*++o ff *3) 

Integrating and again, in the light of symmetry, putting the constant 
equal to zero, we arrive at the relation between e(g) and r (6): 

e#+; (4---2T+TT’)=o (1.10) 

A second equation is obtained by eliminating E( from equation (1.7) 

J( (0) L= B; (1.11) 

Boundary conditions for the variable r (5) are r (cl) = + 1. 
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Since the function $(e) is ordinarily expressed as a power series in 

0, convergent within a sufficiently wide interval, the solution of system 

(1.10) and (1.11) may be represented by a power series. 

2. The solution of equations (1.10) and (1. 11) in closed form is ob- 

tained only in the case of constant viscosity, when $I(61 = 1. From (1.11) 

and the boundary conditions for r we obtain (see [ 1 1 ) 

sh 7.5 T=:_ 
sh ?. ’ 

Therefore equation (1.10) takes the form 

0’ f -$ (E - 2 2 -I- & sh2 A:) = 0 
\ 

(2.1) 

(2.2) 

and is easily integrated; its integral satisfying the boundary conditions, 

is 
1 

0 = j2 (1 - E2) -- I.3 sh i. -!-- (ch i. - ch 1.6) -I- 4& (ch 2h - ch2AE) 

The maximum value of temperature is reached for 5 = 0: 

(2.3) 

(2.4) 

Proceeding from the corresponding incomplete energy, equations , it is 

easy to construct also solutions for 8, taking into account only one of 

the thermal effects: the Joule heat 8 (1) or the frictional heat 8 (21, 

($1) = ! .A_ 
2i\2 “&-j-)(‘-529-k (ch h - ch A[) i AA (ch 2A - ch 210 (2.5) . . 

&x (ch 21. - ch 2A.9 

The dependence of the maximum temperatures 8 (I) and 6(‘) on the para- 

meter h has the form 

(2.7) 

in 

From this it is possible to obtain the following boundary relations: 

lim 0:) = 0, limfjg) = 1 
T1 

as A -+ 0, lim 0%’ = lim 02) = 0 as h+c~ 

Comparison of formulas (2.7) shows that for small h the principal role 
the increase of temperature is played by internal friction. but for 

sufficiently large h the situation is reversed. 

3. We now consider the case where the viscosity is related to the 

temperature by a hyperbolic dependence 
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Equations (1.10) and (1.11) are then written in the form 

7” - hZ@c = 0, $’ + ,2 pz (E-22r+tY)=O (3.2) 

Considerations of symmetry and the form of these equations lead to 
the conclusion that f(& is an odd function, and that {f(& is an even 
one. Therefore, we shall express them as series: 

7= i 
2ifl . 

‘2i+lc 1 (I, = ; bti Ezi (3.3) 
i=o i=o 

Substituting series (3.3) into equations (3.2). we obtain the re- 
currence formulas 

m=i 

(2i + 2) b,i+a - $ (2uai+r - (i + 1) x a*m+r aa (i_m)+l) = 0, (i>O) (3.5) 
m=o 

which give us means for the computation of the coefficients of the ex- 
pansions (3.3) as functions of al, bO and b2. For this purpose, a1 and bO 

are determined from the boundary conditions for r and F,& which here have 
the form: 

;bzi= 1, 
b2 = (1 - a112 B” 

?.2 (3.6) 

Combining equations (3.41 and (3.5) and the formula for bpt it is 
possible to obtain a relation containing Only azs+ i: 

P2 A2bo 
m=i-1 

o2iSs = (7_i + 3) (2i + 2) F ‘2i+l- ‘2i--I - zz a2m+1 x 

m=o 

(3.7) 

n=i-m-1 

X ( ‘2 (i-m) -1 1 

i--m .-Z I4 a 2nf1 a2 (i--m--n) -1 II (i > 0) n=o 
The question of convergence of the series (3.3) can hardly be studied 

fully. However, for sufficiently small k and 6 it is possible to demon- 
strate that the series (3.3) are uniformly convergent in the interval 

(- p* + pf, where p is some number greater than unity. In the same con- 
text, if for 2 < i 6 n the inequality 1 azi+ 11 < Yri is valid, where 
0 < 6 < 1 and Y > bg, M > a1, then from formula (3.7), 1 a*,,+ 3/ < MC ‘+I 
can be easily obtained for sufficiently small h and 6. If, in addition to 
the smallness of x and fi the inequality 1 0~1 < MC’ is also valid, then 
by induction, / a2 i+ iI < dbc i for all i > 2. Then the radius of convergence 
of the first of the series is 

p = lim (o n+03 2n+pn 2 $1 (3.9) 



1350 S.A. Regirer 

The convergence of the second series is investigated with the aid of 

the same evaluation, proceeding from (3.5). 

Similarly it is possible to construct solutions of our problem in the 

form of a uniformly convergent series, taking account of only one of the 

thermal effects just as in Section 2. 
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